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Abstract The pseudo-state stabilization problem of
commensurate fractional-order nonlinear systems is
investigated. The concerned fractional-order nonlinear
system is of parametric strict-feedback form with both
unknown parameters and the additive disturbance. To
solve this problem, a new nonlinear adaptive control
law is constructed via fractional-order backstepping
scheme. The developed fractional-order controller does
not require the knowledge about both the interval of
uncertain parameters and the upper bound of the addi-
tive disturbance. The asymptotic pseudo-state stability
of the closed-loop system is proved in terms of frac-
tional Lyapunov stability. Several examples are per-
formed finally, and the efficiency is verified.
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1 Introduction

With the development of physics, fractional-order sys-
tems have been widely studied in dynamical systems
and control. This is mainly due to the fact that many
physical processes are well characterized by fractional-
order differential equations [1–3]. For more details on
the applications of fractional calculus, one can refer
to the monographs [1–4] and the references therein.
To distinguish with the state, the Lyapunov stability
and the Lyapunov function in classical integer-order
systems, in fractional-order systems they are called
the pseudo-state, the fractional Lyapunov stability and
the fractional Lyapunov function, respectively. You can
refer to references [5–8] for distinguishing these con-
cepts.

Thepseudo-state stabilizationproblemof fractional-
order systems has attracted the attention of many
researchers recently. Most of the known results con-
centrated on the fractional-order linear systems. The
early stability criterion is the Matignon theorem [9].
Then, the linear matrix inequality (LMI) representa-
tions were introduced in [1], and the sufficient and nec-
essary conditions were investigated by [10–12] further.
With respect to LMI conditions, the pseudo-state feed-
back stabilization of deterministic fractional-order lin-
ear systemswas addressed in [5,13]. On the other hand,
uncertainties are common phenomena in fractional-
order systems. Therefore, many robust pseudo-state
stabilization results were put forward recently, such
as in [14] and the references therein. Besides, H∞

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2018-0&domain=pdf


668 D. Ding et al.

control problems of fractional-order systems were pro-
posed by [15–17], and fractional-order reference adap-
tive control was investigated in [18–20] and the refer-
ences therein. However, real fractional-order systems
are always nonlinear with uncertainties.

It is well known that Lyapunov direct method is
the fundamental tool to stabilize nonlinear systems.
An early fractional Lyapunov-like theory was inves-
tigated by [21] for fractional-order systems. In [22,
23], Mittag–Leffler stability and generalized Mittag-
Leffler stability were introduced to describe frac-
tional Lyapunov stability of fractional-order systems.
Generalized Mittag-Leffler stability of multivariables
fractional-order systems was investigated by [24] fur-
ther. Trigeassou et al. [6] demonstrated that classical
Lyapunov functions are valid for fractional-order sys-
tems. It should be emphasized that the fractional Lya-
punov functions are introduced to describe the pseudo-
state stability of fractional-order systems. However,
finding appropriate fractional Lyapunov functions for
fractional-order systems remains a tedious task. Some
existing possible fractional Lyapunov functions for
fractional-order systems can be found in [6,25,26].

As we know, a few results on the pseudo-state sta-
bilization of fractional-order nonlinear systems have
been reported in terms of fractional Lyapunov sta-
bility. In [27], the linear pseudo-state feedback was
introduced to stabilize fractional-order nonlinear sys-
tems. Robust pseudo-state stabilization of fractional-
order nonlinear complex networks was investigated
by [28] via Lyapunov indirect approach. For some
simple examples of fractional-order nonlinear sys-
tems pseudo-state stabilization, one can refer to [6,21–
26]. Recently, fractional-order sliding mode control is
well defined for pseudo-state stabilizing some specific
fractional-order nonlinear systems, which one can refer
to [29] and the references therein.

Inspired by the above results, we aim to investigate
the pseudo-state stabilization problem of commensu-
rate fractional-order nonlinear systems. As we know,
backstepping is a well-known efficient methodology of
stabilizing nonlinear systems, which has been widely
applied in practical applications [30]. However, to our
best knowledge, backstepping is restricted to the clas-
sical integer-order nonlinear systems. Besides the first
example proposed in [2] and our previous theoretical
results [31,32], there are few results on it. There are
many works to be done with backstepping control laws
design for fractional-order nonlinear systems. As the

resulting control laws are with fractional-order forms,
we call such methodology the fractional-order back-
stepping.

In our contributions, the pseudo-state stabiliza-
tion problem of commensurate fractional-order non-
linear systems with both the parameter uncertainty
and the additive disturbance is solved. By use of
fractional-order backstepping scheme, the analytic
form of pseudo-state feedback control laws of stabi-
lizing uncertain fractional-order nonlinear systems is
designed. The global convergence of the closed-loop
system is guaranteed in terms of fractional Lyapunov
stability. In our design, the uncertain system parame-
ters are only assumed to be unknown constants. The
additive disturbance is only required to be bounded
by unknown upper bound, which is estimated by the
designed adaptive law. Besides the estimate of the
upper bound of the disturbance, the number of the sys-
tem parameter estimates is equal to that of the unknown
system parameters. The parameters in the designed
control law are not related to the additive disturbance
and unknown system parameters, which can be chosen
freely for improving the performance of the closed-
loop system. Before the main result, a general frame-
work of adaptive fractional Lyapunov based design is
well defined via control fractional Lyapunov function
(CFLF) for fractional-order systems. Finally, several
examples demonstrate the efficiency of the proposed
control scheme.

The rest of the paper is organized as follows. In
Sect. 2, some preliminaries are introduced. Our main
results are presented in Sect. 3, and the analytic form
of the control law is presented. The efficiency of the
proposed pseudo-state control law is verified in sev-
eral examples in Sect. 4. Finally, some conclusions are
summarized in Sect. 5.

We use the following notations. The real number and
n dimension real space areR andRn , respectively. The
transpose of a matrix A is denoted by A�. ‖ · ‖,| · |
denote the norm and the abstract, respectively. �·� is
the ceiling function. A matrix A > 0 means that A is
a positive definite matrix. The symbol Dν shorted for
Dν
t , where t is the time, represents the fractional-order

derivative operator with Caputo type.

2 Preliminaries

In this paper, the Caputo fractional-order derivative is
used.
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Asymptotic pseudo-state stabilization of commensurate 669

Definition 1 [4] Let f (t) is a real continuously differ-
entiable function. The Caputo fractional-order deriv-
ative with order 0 < ν < 1 on t > 0 is defined by

Dν
t f (t) = 1

Γ (n − ν)

∫ t

0

f (n)(τ )

(t − τ)ν−n+1 d τ, (1)

where n = �ν�, ν > 0.

Definition 2 [22] The constant x0 is an equilibrium of
fractional-order systems Dνx = f (x, t), x ∈ R

n , if
and only if f (x0, t) = Dνx0. Without loss of general-
ity, let the equilibrium be x0 = 0.

Definition 3 [22] A continuous function γ : [0, t) →
[0,∞) is said to be the K -class function if it is strictly
increasing and γ (0) = 0.

The stability analysis of fractional-order systems
was investigated in [6,21–26]. Fractional Lyapunov
stability is shown by the following fractional-order
extension of Lyapunov direct method.

Theorem 1 [23] Let x(t) = 0 be the equilibrium point
of the fractional-order system Dνx = f (x, t), x ∈
D ⊂ R

n, where D contains the origin. Let fractional
Lyapunov function V (t, x(t)) : [0,∞] × R

n → R

be a continuously differentiable function and locally
Lipschitz with respect to x. If there exist three K -class
functions γi , i = 1, 2, 3 such that

(i) γ1(‖x‖) ≤ V (t, x(t)) ≤ γ2(‖x‖), (2)

(ii) DνV (t, x(t)) ≤ −γ3(‖x‖). (3)

where t ≥ 0, x ∈ D. Then, the x(t) = 0 is asymptoti-
cally stable. Moreover, if the conditions hold globally
on D = R

n, the x(t) = 0 is globally asymptotically
stable.

It should be noted that, Theorem 1 tells us the
pseudo-state stable conditions of fractional-order sys-
tems. To be specific, the norm symbol ‖ · ‖ represents
Euclidean norm or one K -class function. It is obvious
that they are equivalent for (2) and (3) always.

Lemma 1 [22] Let x(t) ∈ R be a real continuously
differentiable function and Dνx(t) ≤ Dν y(t), x(0) =
y(0), where 0 < ν < 1 is the fractional order. Then,
x(t) ≤ y(t).

To construct fractional Lyapunov function for
fractional-order systems, the power law for fractional-
order derivative is introduced before.

Lemma 2 [32] Let x(t) ∈ R be a real continuously
differentiable function. Then, for any p = 2n, n ∈
N, Dνx p(t) ≤ px (p−1)(t)Dνx(t), where 0 < ν < 1 is
the fractional order.

Proof A simple case of p = 2 was shown by [26] with
respect to Lemma 1. For the complete proof, one can
see [31].

Corollary 1 Let x(t) ∈ R be a real continuously dif-
ferentiable function. Then, for p = 2, 1

2D
νx2(t) ≤

x(t)Dνx(t), where 0 < ν < 1 is the fractional order.

Corollary 2 Let x(t) = [x1(t), . . . , xn(t)]T ∈ R
n be

a real continuous and differentiable vector function.
Then, Dν[x(t)T Px(t)] ≤ 2x(t)T PDνx(t), where 0 <

ν < 1 is the fractional order and P = diag[p1, . . . ,
pn] > 0.

It will be demonstrated in Sect. 3 that 1
2 x(t)

T Px(t)
(or P = I ) is always a reasonable fractional Lyapunov
function for fractional-order systems.

The concept of adaptive control fractional Lyapunov
function (ACFLF) is introduced to test whether an
uncertain fractional-order system is pseudo-state feed-
back stabilized by applying the adaptive control law.

Definition 4 Asmooth function V (t, x(t), θ̃ ) : [0,∞)

×D×R
m is called a ACFLF for Dνx(t) = f (x, u, θ),

f (0, 0, ·) = 0 with the adaptive control law u =
α(x, θ̂ ) if there exist three K -class functions γi , i =
1, 2, 3 such that

(i) γ1(‖φ‖) ≤ V (t, x(t), θ̃ ) ≤ γ2(‖φ‖), (4)

(ii) DνV (t, x(t), θ̃ ) ≤ −γ3(‖φ‖). (5)

where t ≥ 0, x ∈ D and φ = [x�, θ�]�, θ ∈ R
m is

the unknown parameter, the parameter estimate error
is θ̃ = θ − θ̂ and Dν θ̂ = τ(x, θ̂ ) is the adaptive law
of the parameter estimate. Moreover, if D = R

n , the
ACFLF holds globally.

As the adaptive parameters appear in V , the frac-
tional Lyapunov function is called adaptive control
fractional Lyapunov function (ACFLF). The aim of
pseudo-state stabilizing uncertain fractional-order non-
linear system is to design an adaptive pseudo-state feed-
back control lawu = α(x, θ̂ ), Dν θ̂ = τ(x, θ̂ ) such that
the closed-loop system is (globally) asymptotically sta-
ble. Actually, finding α, τ and V satisfying (4) and (5)
is a difficult task in most cases [21–23,25,26].
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Remark 1 The above conditions are sufficient condi-
tions of pseudo-state stabilizability of a class of uncer-
tain fractional-order nonlinear systems. It is possible
that there exist other better candidate fractional Lya-
punov functions, which may contradict with Theo-
rem 1. However, they are always valid for some specific
fractional-order nonlinear systems.

Before Sect. 3, we review the adaptive fractional-
order backstepping in an example. For the details, one
can refer to [21,32]. By the way, the pseudo-state stabi-
lization problem of fractional-order nonlinear systems
with additive disturbance is introduced.

Example 1 Consider a fractional-order nonlinear pla-
nar system

{
Dνx = xξ + xθ
Dνξ = u + d(t)

, (6)

where x, ξ ∈ R are the states and u ∈ R is the control
input. θ is the unknown constant parameter. d(t) is the
unknown bounded disturbance, but we do not know its
bound.

Two cases (i),(ii) are considered here.
Case (i). When d(t) = 0, let z1 = x and ξ viewed

as the virtual control, the error z2 = ξ − α(x, θ̂ ), we
have

Dνz1 = z1
[
z2 + α(x, θ̂ )

]
+ z1θ. (7)

Let the parameter estimate error θ̃ = θ − θ̂ , the first
fractional Lyapunov function V1(z1, θ̂ ) = 1

2 z
2
1 + 1

2ρ θ̃2.

If choose α(x, θ̂ ) = −C1 − θ̂ , we have

DνV1 ≤ −C1z
2
1 + z21z2 + θ̂

[
z21 + 1

ρ
Dν θ̂

]
. (8)

We postpone the choice of update law for θ̂ until the
last step. To design the adaptive control u, consider the
ACFLF Va(x, ξ, θ̂ ) = V1 + 1

2 z
2
2, we have

DνVa ≤ −C1z
2
1 + θ̃

[
z21 − 1

ρ
Dν θ̂

]

+ z2
[
u + z21 − Dνα

]
. (9)

One control input and the adaptive law can be chosen
by

u = −C2z2 − z21 + Dνα, (10)

Dν θ̂ = ρz21. (11)

Case (ii). When the disturbance is bounded by a
known upper bound ‖d(t)‖∞ ≤ σ . The first fractional
Lyapunov design is the same with case (i). Consider-
ing the same ACFLF, one control and the adaptive law
can be chosen by

u = −C2z2 − z21 + Dνα − sign(z2)σ, (12)

Dν θ̂ = ρz21. (13)

where sign is the sign function.
In two cases (i), (i i), we have DνVa ≤ −C1z21 −

C2z22. Unless z = 0, we have DνVa < 0. There exists
a K -class function γ such that DνVa ≤ −γ (‖z̄‖), z̄ =
[z�, θ̃ ]�. According toTheorem1, the closed-loop sys-
tems are globally asymptotically stable.

Remark 2 Different from thebacksteppingdesign [30],
the adaptive fractional-order backstepping scheme
introduced in Example 1 assumes that the unknown
parameters ant their estimates all are unknown con-
stants. In this way, the chain rule for fractional deriva-
tive is avoided and the tuning function design become
more simple as (11) and (13). The efficiency of this
assumption can be proved by the convergence of the
resulting closed-loop control systems by use the The-
orem 1.

Remark 3 In Example 1, the adaptive fractional-order
backstepping can deal with parameter uncertainties by
including the parameter estimation scheme. The num-
ber of the parameter estimates is equal to that of the
unknown parameters. However, the disturbance can
be encountered in many physical systems including
fractional-order systems. If the upper bound of the dis-
turbance can be determined, the switching control law
(12) can be obtained. However, the knowledge of the
disturbance may be very limited in reality, where the
upper bound is not necessary to be known.

3 Main result

We consider the parametric strict-feedback form of
fractional-order nonlinear system with additive distur-
bance, where the unknown constant parameters appear
linearly.
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Asymptotic pseudo-state stabilization of commensurate 671

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dνx1 = x2 + ϕ�
1 (x1)θ

Dνx2 = x3 + ϕ�
2 (x1, x2)θ

...

Dνxn−1 = xn + ϕ�
n−1(x1, . . . , xn−1)θ

Dνxn = β(x)u + ϕ�
n (x)θ + d(t)

, (14)

whereβ(x) �= 0 for all x ∈ R
n, θ ∈ R

m is the unknown
constant, ϕi ∈ R

m, i = 1, . . . ,m are known smooth
nonlinear functions, d(t) is the bounded additive dis-
turbance, and u ∈ R is the control input.

The following three assumptions are given firstly.

(i) All pseudo-states of fractional-order system are
observable.

(ii) All signals and their first n fractional-order deriv-
atives with fractional order ν are known and
bounded.

(iii) The matched disturbance d(t) is bounded by
‖d(t)‖∞ ≤ σ , where σ is unknown.

Remark 4 When d(t) = 0, the system is the stan-
dard parametric strict-feedback form of fractional-
order nonlinear system. Assumption 2 is necessary for
the boundness of parameter estimates. The disturbance
is only assumed to be bounded in Assumption 3, which
corresponds most practical cases.

Theorem 2 Let the parametric strict-feedback form of
fractional-order nonlinear system (14). If the ACFLF
is taken by

Va(z1, . . . , zn, θ̃ , σ̂ ) = 1

2

n∑
i=1

z2i +
1

2
θ̃�Γ −1θ̃+ 1

2γ
σ̃ 2,

(15)

where z1 = x1, zi = xi − αi−1(z1, . . . , zi−1, θ̂ ), i =
2, . . . , n, θ̃ = θ−θ̂ is the parameter estimate error and
σ̃ = σ −σ̂ is the disturbance bound estimate error, that
is, there exists an adaptive pseudo-state feedback con-
trol u which renders the system globally asymptotically
stable. The adaptive pseudo-state feedback control law
can be chosen by

u = − 1

β(x)

[
Cnzn + zn−1 + ϕ�

n (x)θ̂

− Dναn−1

(
z1, . . . , zn−1, θ̂

)
+ zn σ̂ 2

|zn|σ̂ +Cnz2n

]
,

(16)

Dν θ̂ = Γ

n∑
i=1

ϕi (x1, . . . , xi )zi , (17)

Dν σ̂ = γ |zn|, (18)

αi−1 = −Ci−1zi−1 − zi−2 − ϕ�
i−1(x1, . . . , xi−1)θ̂

+ Dναi−2,

i = 3, . . . , n. (19)

whereα1(z1, θ̂ ) = −C1z1−ϕ�
1 (x1)θ̂ ,C1, . . . ,Cn > 0

are constants. The adaptive parameter θ̂ is updated by
(17), the adaptive disturbance bound σ̂ is updated by
(18), Γ = diag[ρ1, . . . , ρm] > 0, γ > 0 are the gains
of the adaptive law (17) and (18), respectively.

Proof Byuse of recursion,we have the following steps.
Step 1. Let z1 = x1 and x2 viewed as the virtual

control, the error z2 = x2 − α1(z1, θ̂ ), we have

Dνz1 = z2 + α1(z1, θ̂ ) + ϕ�
1 (x1θ). (20)

Note θ̃ = θ − θ̂ , let the first fractional Lyapunov func-
tion V1(z1, θ̃ ) = 1

2 z
2
1 + 1

2 θ̃
�Γ −1θ̃ , we have

DνV1 ≤ z1
[
z2 + α1(z1, θ̂ ) + ϕ�

1 (x1)θ̂
]

+ θ̃� (
ϕ1(x1)z1 − Γ −1Dν θ̂

)
. (21)

If choose α1(z1, θ̂ ) = −C1z1 − ϕ�
1 (x1)θ̂ , z2 and θ̃ are

to be governde to zeros. Thus, we have

DνV1 ≤ −C1z
2
1 + z1z2 + θ̃� (

ϕ1(x1)z1 − Γ −1Dν θ̂
)

.

(22)

Step 2. Let the error z3 = x3 − α2(z1, z2, θ̂ ), we
have

Dνz2= z3+α2(z1, z2, θ̂ )+ϕ�
2 (x1, x2)θ−Dνα1(z1, θ̂ ).

(23)

Let the second fractional Lyapunov function V2(z1, z2,
θ̂ ) = V1 + 1

2 z
2
2, we have

DνV2 ≤ −C1z
2
1 + z1z2

+ θ̃�
(

2∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)

+ z2
[
z3 + α2(z1, z2, θ̂ ) + ϕ�

2 (x1, x2)θ̂

− Dνα1(z1, θ̂ )
]
. (24)
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672 D. Ding et al.

If chooseα2(z1, z2, θ̂ ) = −C2z2−z1−ϕ�
2 (x1, x2)θ̂

+ Dνα1(z1, θ̂ ), z3 and θ̃ are to be governed to zeros.
Thus, we have

DνV2 ≤ −
2∑

i=1

Ci z
2
i + z2z3

+ θ̃�
(

2∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)
.

(25)

Step 3. Let the error z4 = x4 − α3(z1, z2, z3, θ̂ ), we
have

Dνz3 = z4 + α3(z1, z2, z3, θ̂ ) + ϕ�
3 (x1, x2, x3)θ

− Dνα2(z1, z2, θ̂ ). (26)

The third fractional Lyapunov fucntion is chosen by
V3(z1, z2, z3, θ̂ ) = V2 + 1

2 z
2
3, we have

DνV3 ≤ −
2∑

i=1

Ci z
2
i + z2z3

+ θ̃�
(

3∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)

+ z3
[
z4 + α3(z1, z2, z3, θ̂ )

+ ϕ�
3 (x1, x2, x3)θ̂ − Dνα2(z1, z2, θ̂ )

]
.(27)

If chooseα3(z1, z2, z3θ̂ ) = −C3z3−z2−ϕ�
3 (x1, x2,

x3)θ̂ + Dνα2(z1, z2, θ̂ ), z4 and θ̃ are to be governed to
zeros. Thus, we have

DνV3 ≤ −
3∑

i=1

Ci z
2
i + z3z4

+ θ̃�
(

3∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)
.

(28)

Stepn−1.Let the error zn = xn−αn−1(z1, . . . , zn−1,

θ̂ ), we have

Dνzn−1 = zn + αn−1(z1, . . . , zn−1, θ̂ )

+ ϕ�
n−1(x1, . . . , xn−1)θ

− Dναn−2(z1, . . . , zn−1, θ̂ ). (29)

Let the n − 1th fractional Lyapunov function Vn−1

(z1, . . . , zn−1, θ̂ ) = Vn−2 + 1
2 z

2
n−1, we have

DνVn−1 ≤ −
n−2∑
i=1

Ci z
2
i + zn−2zn−1

+ θ̃�
(
n−1∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)

+ zn−1

[
zn + αn−1(z1, . . . , zn−1, θ̂ )

+ ϕ�
n−1(x1, . . . , xn−1)θ̂

− Dναn−2(z1, . . . , zn−2, θ̂ )
]
. (30)

If choose αn−1(z1, . . . , zn−1, θ̂ ) = −Cn−1zn−1 −
zn−2 −ϕ�

n−1(x1, . . . , xn−1)θ̂ + Dναn−2(z1, . . . , zn−2,

θ̂ ), zn and θ̃ are to be governed to zeros. Thus, we have

DνVn−1 ≤ −
n−1∑
i=1

Ci z
2
i + zn−1zn

+ θ̃�
(
n−1∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)
.

(31)

Step n. The last equation can be transformed into

Dνzn = β(x)u + ϕ�
n (x)θ + d(t)

− Dναn−1(z1, . . . , zn−1, θ̂ ). (32)

Regard the unknown upper bound of the distur-
bance as the unknown parameter, let the ACFLF
Va(z1, . . . , zn, θ̂ ) = Vn−1 + 1

2 z
2
n + 1

2γ σ̃ , we have

DνVa ≤ −
n−1∑
i=1

Ci z
2
i + zn−1zn

+ θ̃�
(

n∑
i=1

ϕi (x1, . . . , xi )zi − Γ −1Dν θ̂

)

+ zn
[
β(x)u + ϕ�

n (x)θ̂

− Dναn−1(z1, . . . , zn−1)θ̂
]

+ |zn|σ

− 1

γ
σ̃Dν σ̂ . (33)

One control and the adaptive law can be chosen by
(16), (17) and (18). Thus, we have
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Asymptotic pseudo-state stabilization of commensurate 673

DνVa ≤ −
n∑

i=1

Ci z
2
i − z2n σ̂

2

|zn|σ̂ + Cnz2n
+ |zn|σ̂

≤ −
n−1∑
i=1

Ci z
2
i . (34)

Denote

ϑ = [z1, . . . , zn, θ̃1, . . . , θ̃m, σ̃ ]�;
τ = max{1, ρi , γ, i = 1, . . . ,m};
ε = min{1, ρi , γ, i = 1, . . . ,m}.
Thus, we have

1

2τ
‖ϑ‖2 ≤ Va(ϑ) ≤ 1

2ε
‖ϑ‖2. (35)

On the other hand, we consider two cases (i) and (ii):

(i) When [z1, . . . , zn−1] �= 0, we know DνVa <

0. There exists a K -class function γ1 such that
DνVa ≤ −γ1(‖ϑ‖);

(ii) When [z1, . . . , zn−1] = 0, we know DνVa ≤ 0. If
DνVa < 0, similar to case (i), there exists a K -class
function γ2 such that DνVa ≤ −γ2(‖ϑ‖). But, for
the case DνVa = 0, we know DνVa = DνC 
⇒
Va = C , where C = Va(t = 0) is a non-negative
constant. So, we know that ‖ϑ‖ = C ′, whereC ′ is a
constant only related toΓ, γ . Besides,C = 0 if and
only if z = 0, θ̃ = 0, σ̃ = 0. Therefore, there exists
a K -class function γ3 such that DνVa ≤ −γ3(‖ϑ‖).
With respect to Theorem 1, for the cases (i) and (ii),

the pseudo-states in the closed-loop system are asymp-
totically stable. Besides, the ACFLF (15) holds glob-
ally.

So far, this proof is completed. ��
Remark 5 It is shown that the parameters of the
designed control law are not related to the addi-
tive disturbance and unknown system parameters. The
unknown upper bound of the additive disturbance is
estimated by the designed adaptive law. Besides the
estimate of the upper bound of the disturbance, the
number of the system parameter estimates is equal to
that of the unknown system parameters.

Corollary 3 If the ACFLF is taken by (15) and choose
the adaptive control law (16), (17)and (18), the pseudo-
state trajectories of the fractional-order nonlinear sys-
tem (14) will approach to xe = [xe1, xe2, . . . , xen]�
asymptotically, where xe1 = 0, xe2 = −ϕ�

1 (0)θ, xei+1 =
−ϕ�

i (0, xe1, . . . , x
e
i−1)θ, i = 2, . . . , n − 1.

Proof By use of (34) and (35), we have

DνVa(ϑ) ≤ −2cεVa(ϑ). (36)

The reason for (36) is that, the existingγi , i = 1, 2, 3
can guarantee there exists a positive constant c such that
Va(ϑ) ≤ −c‖ϑ‖2 using the discussion of (i) and (ii) in
the proof of Theorem 2.

Therefore, there exists a nonnegative function N (t)
satisfying DνVa(ϑ) + N (t) = −2cεVa(ϑ). Take the
Laplace transform, we have

Va(s) = Va(0)sν−1 − N (s)

sν + 2cε
, (37)

where Va(s) = L [Va] and Va(0) is a nonnegative con-
stant.

If ϑ(0) = 0, namely Va(0) = 0, the solution is
ϑ = 0; if ϑ(0) > 0,Va(0) > 0. Because Va(ϑ) is
locally Lipschitz with respect to ϑ , it follows from the
existence and uniqueness solution [19], we have

Va(t) = Va(0)Eν(−2cεtν) − N (t)

×[tν−1Eν,ν(−2cεtν)], (38)

where Eν, Eν,ν are Mittag-Leffler type functions [19]
and ∗ is convolution operator.

Thus, we have Va(t) ≤ Va(0)Eν(−2cεtν). With
respect to (35), we have

‖ϑ‖ ≤ √
2τVa(0)Eν(−2cεtν), (39)

where τVa(0) > 0 for ϑ(0) �= 0.
Therefore, lim

t→∞ z1 = lim
t→∞ x1 = lim

t→∞ z2 = · · · =
lim
t→∞ zn = 0. By use of recursion, the proof is com-

pleted. ��
Remark 6 In Corollary 3, it is obvious that the pseudo-
state trajectories xi , i = 1, . . . , n and zi , i = 1, . . . , n
are bounded. Besides, the αi , i = 1, . . . , n − 1 are
bounded. As the rights of (17) and (18) are Lipschitz
with respect to zi , the parameter estimates θ̂ , σ̂ are
bounded according to Theorem 3 in [19]. The con-
trol law (16) is bounded. It can be seen that u →
− 1

β(xe)ϕ
�
n (xe)θ as t → ∞ by use of (16).

4 Numerical examples

In this section, two examples of fractional-order non-
linear systems are presented to illustrate the effective-
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ness of the proposed theoretical results. These exam-
ples you can find in [4] also. The Grünwald–Letnikov
fractional-order difference [4] is used to simulate the
fractional-order derivative.

Dν
tk f (t) ≈ h−ν

k∑
i=0

C ν
i f (tk−i ), (40)

where the time step is set to h = 0.0005. tk = kh is
the discrete point and (−1)iC ν

i , i = 1, 2, . . . are bino-
mial coefficients. The fractional Adams method [33]
is used to simulate the fractional-order nonlinear sys-
tems. In the simulations, we abandon the short memory
principle for improving numerical accuracy.

Example 2 Consider the fractional-orderGenesio–Tesi
system with control u and disturbance d.

⎧⎨
⎩

Dνx = y
Dν y = z
Dνz = −β1x − β2y − β3z + β4x2 + u + d(t)

,

(41)

where the fractional order is ν = 0.7 and β1, β2, β3, β4

are viewed as unknown constants,whichmaybe caused
by modeling uncertainties. The additive disturbance is
d(t) = x cosπ t + 0.1 sin(3t) and ‖d‖∞ ≤ σ .

Step 1. Let z1 = x , view y as the virtual control and
z2 = y − α1, we have Dνz1 = z2 + α1(z1). Let the
first fractional Lyapunov function V1 = 1

2 z
2
1.

If choose α1(z1) = −K1z1, K1 > 0, we have
DνV1 ≤ −K1z21 + z1z2.

Step 2. Let z3 = z − α2, we have Dνz2 = z3 +
α2 + Dνα1. Let the second fractional Lyapunov func-
tion V2 = V1 + 1

2 z
2
2.

If chooseα2(z1, z2) = −K2z2−z1+Dνα1, K2 > 0,
we have DνV2 ≤ −K1z21 − K2z22 + z2z3.

Step 3. With the last equation, let the ACFLF

Va = V2 + 1

2
z23 +

4∑
i=1

1

2ρi
β̃2
i + 1

2γ
σ̃ 2. (42)

where β̃i = βi − β̂i , i = 1, 2, 3, 4, σ̃ = σ − σ̂ .
The adaptive control law can be chosen by

u = −K3z3 − z2 + β̂1x + β̂2y + β̂3z

− β̂4x
2 + Dνα2 − z3σ̂ 2

|z3|σ̂ + K3z23
, (43)
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Fig. 1 The state trajectories in Example 2

Dνβ̂1 = −ρ1xz3, Dνβ̂2 = −ρ2yz3,

Dνβ̂3 = −ρ3zz3, Dνβ̂4 = ρ4x
2z3, Dν σ̂ = γ |z3|.

(44)

Hence, we have DνVa ≤ −K1z21 − K2z22.

In the simulation, K1 = 6, K2 = 7, K3 = 6, ρ1 =
ρ2 = ρ3 = ρ4 = γ = 1.The initial state is (1, 1, 1) and
the initial parameter estimates are zeros. The unknown
parameters are set to β1 = β2 = 1.1, β3 = 0.45, β4 =
1.Thepseudo-state trajectories of the controlled system
are shown in Fig. 1. By applying the adaptive control,
it is seen that the system converges in a finite time.
The control input is shown in Fig. 2. The parameter
estimates are shown inFig. 3. The upper bound estimate
is shown in Fig. 4.

Example 3 Consider the fractional-order gyroscope
with control u and disturbance d.

⎧⎨
⎩

Dνx1 = x2
Dνx2 = − p(t)x1 − c1x2 − c2x32 + q(t)x31 + u

+ d(t)
,

(45)

where p(t) = α2

4 − f sin(ωt), q(t) = α2

12 − β
6 −

f sin(ωt)
6 , α2 = 100, β = 1, ω = 25, f = 35.5, the

fractional order is ν = 0.7 and c1, c2 are viewed as
unknown constants, which may be caused by model-
ing uncertainties. The additive disturbance is d(t) =
0.5 cosπ t + 0.1 sin(3t) and ‖d‖∞ ≤ σ .
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Fig. 2 The control input in Example 2
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Fig. 3 The parameter estimates in Example 2

Step 1. Let z1 = x1, view x2 as the virtual control
and z2 = x2−α1, we have Dνz1 = z2+α1(z1, ĉ1, ĉ2).

Denote c̃1 = c1 − ĉ1, c̃2 = c2 − ĉ2. Let the first
fractional Lyapunov function V1 = 1

2 z
2
1 + 1

2ρ1
c̃21 +

1
2ρ2

c̃22.
If chooseα1(z1, ĉ1, ĉ2) = −K1x1, K1 > 0,wehave

DνV1 ≤ −K1z
2
1 + z1z2 − 1

ρ 1
c̃1D

ν ĉ1 − 1

ρ 2
c̃2D

ν ĉ2.

Step 2. With Dνz2 = −p(t)x1 − c1x2 − c2x32 +
q(t)x31 + u + d(t) − Dνα1, note σ̃ = σ − σ̂ let the
candidate ACFLF Va = V1 + 1

2 z
2
2 + 1

2γ σ̃ 2.
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Fig. 4 The upper bound estimate in Example 2
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Fig. 5 The state trajectories in Example 3

The adaptive control law can be chosen by

u = −K2z2 − z1 + p(t)x1 + ĉ1x2

+ ĉ2x
3
2 − q(t)x31 − K1x2 − z2σ̂ 2

|z2|σ̂ + K2z22
,

(46)

Dν ĉ1 = −ρ1x2z2, Dν ĉ2 = −ρ2x
3
2 z2,

Dν σ̂ = γ |z2|. (47)

Hence, we have DνVa ≤ −K1z21.

In the simulation, K1 = 6, K2 = 7, ρ1 = 3, ρ2 =
4, γ = 2. The initial state is (1, 1) and the initial
parameter estimates are zeros. The unknown parame-
ters are set to c1 = 0.5, c2 = 0.05. The pseudo-
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Fig. 6 The control input in Example 3
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Fig. 7 The parameter estimates in Example 3

state trajectories of the controlled system are shown
in Fig. 5. By applying the adaptive control, it is seen
that the system converges in a finite time. The control
input is shown in Fig. 6. The parameter estimates are
shown in Fig. 7. The upper bound estimate is shown in
Fig. 8.

In Examples 2 and 3, it is shown that the proposed
fractional-order controller can stabilize the pseudo-
states of a class of fractional-order nonlinear systems
effectively. In the presence of additive disturbance, the
system pseudo-states, parameter estimates, and control
inputs are all bounded.
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σ estimate

Fig. 8 The upper bound estimate in Example 3

5 Conclusions

In this paper, we present an adaptive fractional-order
backstepping control design for a class of fractional-
order nonlinear systems with additive disturbance.
The proposed control laws do not require the specific
knowledge on the disturbance and the system para-
meters. The asymptotic pseudo-state stability of the
closed-loop system is guaranteed in terms of fractional
Lyapunov stability. Simulation results are provided to
illustrate the effectiveness of the control scheme.

The future work can be directed to investigate the
adaptive fractional-order backstepping control design
for general uncertain fractional-order nonlinear sys-
tems. Besides, the relationship between the Lyapunov
stability and the fractional Lyapunov stability should
be bridged further.
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